Package: SPAS 2024.1.31

SPAS: Stratified-Petersen Analysis System

The Stratified-Petersen Analysis System (SPAS) is designed to estimate abundance in two-sample capture-recapture experiments where the capture and recaptures are stratified. This is a generalization of the simple Lincoln-Petersen estimator. Strata may be defined in time or in space or both, and the s strata in which marking takes place may differ from the t strata in which recoveries take place. When s=t, SPAS reduces to the method described by Darroch (1961) <doi:10.2307/2332748>. When s<t, SPAS implements the methods described in Plante, Rivest, and Tremblay (1988) <doi:10.2307/2533994>. Schwarz and Taylor (1998) <doi:10.1139/f97-238> describe the use of SPAS in estimating return of salmon stratified by time and geography. A related package, BTSPAS, deals with temporal stratification where a spline is used to model the distribution of the population over time as it passes the second capture location. This is the R-version of the (now obsolete) standalone Windows program available at <https://home.cs.umanitoba.ca/~popan/spas/spas_home.html>.

Authors:Carl James Schwarz

SPAS_2024.1.31.tar.gz
SPAS_2024.1.31.zip(r-4.5)SPAS_2024.1.31.zip(r-4.4)SPAS_2024.1.31.zip(r-4.3)
SPAS_2024.1.31.tgz(r-4.4-x86_64)SPAS_2024.1.31.tgz(r-4.4-arm64)SPAS_2024.1.31.tgz(r-4.3-x86_64)SPAS_2024.1.31.tgz(r-4.3-arm64)
SPAS_2024.1.31.tar.gz(r-4.5-noble)SPAS_2024.1.31.tar.gz(r-4.4-noble)
SPAS_2024.1.31.tgz(r-4.4-emscripten)SPAS_2024.1.31.tgz(r-4.3-emscripten)
SPAS.pdf |SPAS.html
SPAS/json (API)
NEWS

# Install 'SPAS' in R:
install.packages('SPAS', repos = c('https://cschwarz-stat-sfu-ca.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cschwarz-stat-sfu-ca/spas/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

6.55 score 2 stars 1 packages 28 scripts 172 downloads 6 mentions 3 exports 27 dependencies

Last updated 10 months agofrom:73ba39ad5a. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-win-x86_64OKNov 20 2024
R-4.5-linux-x86_64OKNov 20 2024
R-4.4-win-x86_64OKNov 20 2024
R-4.4-mac-x86_64OKNov 20 2024
R-4.4-mac-aarch64OKNov 20 2024
R-4.3-win-x86_64OKNov 20 2024
R-4.3-mac-x86_64OKNov 20 2024
R-4.3-mac-aarch64OKNov 20 2024

Exports:SPAS.autopoolSPAS.fit.modelSPAS.print.model

Dependencies:cliexpmfansigenericsgluelatticelifecyclemagrittrMASSMatrixmsmmvtnormnumDerivpillarpkgconfigplyrRcppRcppEigenreshape2rlangstringistringrsurvivaltibbleTMButf8vctrs

Automatic Pooling

Rendered fromAutomaticPooling.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-04-19
Started: 2023-04-19

Conne River 1991 Data

Rendered fromConne1991.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-04-19
Started: 2018-11-24

Conne River 1992 Data

Rendered fromConne1992.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-04-19
Started: 2018-11-24

Harrison River Female Chinook 2011 Data

Rendered fromHarrisonF2011.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-04-19
Started: 2018-11-24

Pooling Columns

Rendered fromPoolingColumns.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-04-19
Started: 2019-11-20

Testing for Pooled Petersen

Rendered fromTestingPooledPetersen.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-04-19
Started: 2019-11-18

Things that can go wrong

Rendered fromThingsThatGoWrong.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-04-19
Started: 2019-11-20